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This paper is devoted to a thin-walled sandwich plate with an individual functionally graded
core. The nonlinear shear deformation theory of a straight normal line is applied. A system
of three differential equations of equilibrium of this plate is obtained, based on the principle
of stationary potential energy, which is reduced to two differential equations and solved
analytically. The critical load of the rectangular sandwich plate is determined. A detailed
analytical study is carried out for selected exemplary plates. Moreover, a numerical FEM
model of this plate is developed. The results of these calculations are compared with each
other.
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1. Introduction

Composite materials have attracted considerable interest in recent decades. Their properties,
including a high strength-to-mass ratio and exceptional stiffness providing significant buckling
resistance, allow designing of more effective structures. Unlike homogeneous materials, they
are characterised by variable properties toward one or more specific directions, which, to some
extent, can be controlled by manufacturing processes. It gives an opportunity to control their
mechanical behaviour such as deformation or the dynamic response. These advantages make
them highly desired structures in numerous branches of the industry, including the aerospace
industry, biomedical engineering, civil and marine engineering.
The application of composites, including thin-walled sandwich structures and functionally

graded materials (FGMs), requires appropriate tools to study and predict their behaviour. As
classical beam, plate, and shell theories cannot capture their variable properties, it is necessary
to formulate new theories and assess their accuracy. This topic gained significant attention; thus,
many researchers are striving to provide more unified and general analytical formulations. In
the last two decades, a significant advancement has been achieved in this field.
Yang and Qiao (2005) developed a higher-order impact model aiming to simulate the free-

-vibration response of a soft-core sandwich beam subjected to a foreign object impact. Carrera
and Brischetto (2009) described a large variety of plate theories including higher-order, zig-zag,
layerwise, and mixed theories to evaluate bending and vibration of sandwich structures. By
performing an asymptotic analysis of three-dimensional linear elasticity, Berdichevsky (2010)
developed a two-dimensional theory of sandwich plates. Bouazza et al. (2010) presented a nu-
merical study on bending of symmetrically laminated plates, where attention was paid to the
shear effect.
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Meiche et al. (2011) proposed an enhanced theory of hyperbolic shear deformation that takes
into account transverse shear deformation effects and may be used to analyse free vibration prob-
lems in thick, functionally graded sandwich panels. Mantari et al. (2012) proposed an innovative
shear deformation theory for sandwich and composite plates that parameterized the displace-
ment field. The authors demonstrated that their theory and three-dimensional elasticity-bending
solutions were in good agreement.

Grover et al. (2013) presented a new inverse hyperbolic shear deformation theory and vali-
dated it for a variety of numerical examples of laminated composite and sandwich plates consid-
ering static and buckling responses. Lopatin and Morozov (2013) focused on solving the buckling
problem of a uniformly compressed rectangular composite sandwich plate with varying boundary
conditions. The authors referred to the Lagrange principle and the first-order shear deformation
theory to formulate the variational buckling equation.

For the static analysis of laminated composite and sandwich panels, Sahoo and Singh (2014)
introduced a novel inverse trigonometric zigzag theory that was elaborated in their paper. The
theory assumed a higher-order displacement field that satisfied the continuity requirements at the
layer interfaces across the thickness of the plate. Kołakowski and Mania (2015) investigated the
dynamic interactive response of square FGM plates subjected to an in-plane pulse loading using
the modified classical laminate plate theory. Marczak and Jędrysiak (2015) studied free vibration
of periodic three-layered sandwich structures referring to the Kirchhoff thin plate theory and the
tolerance averaging technique. Sobhy (2016) introduced a novel shear deformation plate theory
to study hygrothermal vibration and buckling of FGM sandwich plates supported by an elastic
foundation.

Bouzza and Benseddiq (2015) focused on analytical modelling of thermoelastic buckling
behaviour of functionally graded rectangular plates using a hyperbolic shear deformation theory.
Ellali et al. (2015) derived an exact analytical solution for mechanical buckling analysis of a
megnetoelectroelastic plate resting on the Pasternak foundation referring to the third-order shear
deformation plate theory. The use of sandwich structures and the current state of mathematical
modelling were explored by Birman and Kardomateas (2018). The authors focused on various
core types, development of nanotubes, intelligent materials, and functionally graded properties
of sandwich structures.

Magnucki et al. (2019) studied buckling and vibration of a rectangular plate with symmet-
rically variable mechanical properties across its thickness. The proposed nonlinear deformation
hypothesis was assumed, while the derivation was based on the Hamilton principle. Bouazza et al.
(2019) investigated bending behaviour of laminated composite plates. They studied a multilayer
plate by the shear deformation theory and finite element method. Adhikari et al. (2020) focused
on modelling the effect of porosity-type defects and analysing their effect on buckling behaviour
of various types of FGM sandwich combinations, including multiple arrangements of layers.
Foroutan et al. (2021) developed a unified formulation of a fully geometrically nonlinear refined
plate theory in a total Lagrangian approach. The study aimed to analyse the post-buckling
and large deflection behaviour of a sandwich FGM plate with a porous core. Magnucka-Blandzi
et al. (2021) studied bending and buckling problems for simply supported circular plates with
mechanical properties that varied symmetrically in the thickness direction.

Magnucki and Magnucka-Blandzi (2021) devoted their work to generalisation of the ana-
lytical model of sandwich structures. A continuous variation of mechanical properties across
the thickness was assumed, whereas the problem was formulated referring to the principle of
stationary potential energy.

Aguib et al. (2021) studied buckling of a plate made of steel and a magnetorheological elas-
tomer subject to a compressive load. Analytical models of sandwich beams, homogeneous beams
with bisymmetric cross sections, and beams with symmetrically variable mechanical characteris-
tics were presented by Magnucki (2022). They were developed utilising a novel shear deformation
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theory that was inspired by the Zhuravsky shear stress formula. Katili et al. (2023) described
the problem of buckling of FGM sandwich plates in the numerical FEM analysis. Magnucki et
al. (2023) using the generalised theory of deformation studied the buckling problem of an axially
compressed generalised cylindrical sandwich panel and a rectangular sandwich plate.

Many studies in the field of composite structures investigate the problem of buckling using
a specific shear deformation theory, where the form of shear deformation function is assumed
in advance, e.g. trigonometric, inverse trigonometric, hyperbolic, or inverse hyperbolic. In the
presented paper, the buckling of a simply supported rectangular thin-walled plate of length a,
width b, and total thickness h is resolved using the nonlinear shear deformation theory, where
the shear deformation function is obtained analytically with consideration of the classical shear
stress formula. In contrast to other shear deformation theories, in the presented formulation, the
accuracy of the solution does not depend on the pre-defined shear deformation functions. Instead
of predicting these functions here, the classical shear stress formula recalled by Magnucki (2022)
is applied to analytically solve the shear deformation function. Moreover, the proposed formu-
lation enables studying the composite structures with variable mechanical properties described
by complex functions.

The plate is compressed in the middle plane with a uniformly distributed load of the intensi-
ties Nx and Ny (Fig. 1). Young’s modulus of the core is assumed to be described by a parametric
function that allows one to describe homogeneous, three-layer, and five-layer structures. This
approach constitutes a generalisation of sandwich structures, which is possible by introducing
an individual functionally graded core. The stiffness ratio between yjr layers can be optional,
whereas transition of Young’s modulus between them is smooth. The main objective of this
paper is to develop analytical and numerical models and the determine the critical load of the
plates.

Fig. 1. Scheme of the rectangular sandwich plate compressed in the middle plane

The total thickness of the plate is the sum of the following layers

h = 2hf + hc (1.1)

where: hf – thicknesses of the faces, hc – thickness of the core.
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2. Analytical model of the rectangular sandwich plate

Young’s modulus varies in the direction of thickness of the plate as follows:
— the upper face (−1/2 ¬ ζ ¬ −χc/2) and the lower face (χc/2 ¬ ζ ¬ 1/2)

Ef (ζ) = Ef = const (2.1)

— the core (−χc/2 ¬ ζ ¬ χc/2)

Ec(ζ) = Effc(ζ) (2.2)

where the dimensionless function is

fc(ζ) = ec + (1− ec)
[1

2
+
1

2
cos
(

4π
ζ

χc

)]ne
− k

[

cos
(

π
ζ

χc

)]10ne
(2.3)

and ζ = z/h denotes the dimensionless coordinate, χc = hc/h – relative thickness of the core,
ec – coefficient of Young’s modulus (0 < ec ≪ 1), ne – exponent-natural number, k – coefficient
(0 ¬ k ¬ 1− ec). An exemplary variation of Young’s modulus in the direction of plate thickness
is shown graphically in Fig. 2, assuming ec = 0.2, k = 0.1, n = 7.

Fig. 2. Variation of Young’s modulus in the direction of plate thickness

The deformation of the straight normal line to the neutral surface after buckling of this
rectangular plate is shown in Fig. 3.
The longitudinal displacements according to Fig. 3 are as follows:

— the upper face (−1/2 ¬ ζ ¬ −χc/2)

u(uf)(x, y, ζ) = −h
[

ζ
∂w

∂x
− f
(uf)
d (ζ)ψf (x, y)

]

v(uf)(x, y, ζ) = −h
[

ζ
∂w

∂y
− f
(uf)
d (ζ)ϕf (x, y)

]

(2.4)

— the core (−χc/2 ¬ ζ ¬ χc/2)

u(c)(x, y, ζ) = −h
[

ζ
∂w

∂x
− f
(c)
d (ζ)ψf (x, y)

]

v(c)(x, y, ζ) = −h
[

ζ
∂w

∂y
− f
(c)
d (ζ)ϕf (x, y)

]

(2.5)
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Fig. 3. The deformation scheme of the straight normal line of the plate

— the lower face (χc/2 ¬ ζ ¬ 1/2)

u(lf)(x, y, ζ) = −h
[

ζ
∂w

∂x
− f
(lf)
d (ζ)ψf (x, y)

]

v(lf)(x, y, ζ) = −h
[

ζ
∂w

∂y
− f
(lf)
d (ζ)ϕf (x, y)

]

(2.6)

where: w(x, y) – deflection, ψf (x, y) = uf (x, y)/h and ϕf (x, y) = vf (x, y)/h – dimensionless
displacement functions of the faces. Moreover, taking into account the papers by Magnucki
(2022) and Magnucki et al. (2023), the dimensionless deformation functions of the straight
normal line in the successive layers are of the form

f
(uf)
d (ζ) = −Cf +

1

24
(3− 4ζ2)ζ f

(c)
d (ζ) =

∫

Q
(c)
z (ζ)

fc(ζ)
dζ

f
(lf)
d (ζ) = Cf +

1

24
(3− 4ζ2)ζ

(2.7)

where

Q
(c)
z (ζ) =

1

8
[1− χ2c + ec(χ

2
c − 4ζ

2)]− (1− ec)J1(ζ) + kJ2(ζ)

J1(ζ) =

ζ
∫

−χc/2

[1

2
+
1

2
cos
(

4
π

χc
ζ1
)]ne

ζ1 dζ1
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J2(ζ) =

ζ
∫

−χc/2

[

cos
( π

χc
ζ1
)]10ne

ζ1 dζ1

Cf = −
1

48
(3− χ2c)χc +

χc/2
∫

0

Q
(c)
z (ζ)

fc(ζ)
dζ

Thus, the strains can be described in the following manner.

— the upper face (−1/2 ¬ ζ ¬ −χc/2)

ε(uf)x (x, y, ζ) = −h
[

ζ
∂2w

∂x2
− f
(uf)
d (ζ)

∂ψf
∂x

]

ε(uf)y (x, y, ζ) = −h
[

ζ
∂2w

∂y2
− f
(uf)
d (ζ)

∂ϕf
∂y

]

γ(uf)xy (x, y, ζ) = −h
[

2ζ
∂2w

∂x∂y
− f
(uf)
d (ζ)

(∂ψf
∂y
+
∂ϕf
∂x

)]

γ(uf)xz (x, y, ζ) =
df
(uf)
d

dζ
ψf (x, y) γ(uf)yz (x, y, ζ) =

df
(uf)
d

dζ
ϕf (x, y)

(2.8)

— the core (−χc/2 ¬ ζ ¬ χc/2)

ε(c)x (x, y, ζ) = −h
[

ζ
∂2w

∂x2
− f
(c)
d (ζ)

∂ψf
∂x

]

ε(c)y (x, y, ζ) = −h
[

ζ
∂2w

∂y2
− f
(c)
d (ζ)

∂ϕf
∂y

]

γ(c)xy (x, y, ζ) = −h
[

2ζ
∂2w

∂x∂y
− f
(c)
d (ζ)

(∂ψf
∂y
+
∂ϕf
∂x

)]

γ(c)xz (x, y, ζ) =
df
(c)
d

dζ
ψf (x, y) γ(c)yz (x, y, ζ) =

df
(c)
d

dζ
ϕf (x, y)

(2.9)

— the lower face (χc/2 ¬ ζ ¬ 1/2)

ε(lf)x (x, y, ζ) = −h
[

ζ
∂2w

∂x2
− f
(lf)
d (ζ)

∂ψf
∂x

]

ε(lf)y (x, y, ζ) = −h
[

ζ
∂2w

∂y2
− f
(lf)
d (ζ)

∂ϕf
∂y

]

γ(lf)xy (x, y, ζ) = −h
[

2ζ
∂2w

∂x∂y
− f
(lf)
d (ζ)

(∂ψf
∂y
+
∂ϕf
∂x

)]

γ(lf)xz (x, y, ζ) =
df
(lf)
d

dζ
ψf (x, y) γ(lf)yz (x, y, ζ) =

df
(lf)
d

dζ
ϕf (x, y)

(2.10)

Consequently, the stresses are derived:

— the upper face (−1/2 ¬ ζ ¬ −χc/2)

σ(uf)x (x, y, ζ) =
Ef
1− ν2

[ε(uf)x (x, y, ζ) + νε
(uf)
y (x, y, ζ)]

σ(uf)y (x, y, ζ) =
Ef
1− ν2

[ε(uf)y (x, y, ζ) + νε
(uf)
x (x, y, ζ)]

τ (uf)xy (x, y, ζ) =
Ef

2(1 + ν)
γ(uf)xy (x, y, ζ) τ (uf)xz (x, y, ζ) =

Ef
2(1 + ν)

γ(uf)xz (x, y, ζ)

τ (uf)yz (x, y, ζ) =
Ef

2(1 + ν)
γ(uf)yz (x, y, ζ)

(2.11)
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— the core (−χc/2 ¬ ζ ¬ χc/2)

σ(c)x (x, y, ζ) =
Ef
1− ν2

[ε(c)x (x, y, ζ) + νε
(c)
y (x, y, ζ)]fc(ζ)

σ(c)y (x, y, ζ) =
Ef
1− ν2

[ε(c)y (x, y, ζ) + νε
(c)
x (x, y, ζ)]fc(ζ)

τ (c)xy (x, y, ζ) =
Ef

2(1 + ν)
γ(c)xy (x, y, ζ)fc(ζ)

τ (c)xz (x, y, ζ) =
Ef

2(1 + ν)
γ(c)xz (x, y, ζ)fc(ζ)

τ (c)yz (x, y, ζ) =
Ef

2(1 + ν)
γ(c)yz (x, y, ζ)fc(ζ)

(2.12)

— the lower face (χc/2 ¬ ζ ¬ 1/2)

σ(lf)x (x, y, ζ) =
Ef
1− ν2

[ε(lf)x (x, y, ζ) + νε
(lf)
y (x, y, ζ)]

σ(lf)y (x, y, ζ) =
Ef
1− ν2

[ε(lf)y (x, y, ζ) + νε
(lf)
x (x, y, ζ)]

τ (lf)xy (x, y, ζ) =
Ef

2(1 + ν)
γ(lf)xy (x, y, ζ) τ (lf)xz (x, y, ζ) =

Ef
2(1 + ν)

γ(lf)xz (x, y, ζ)

τ (lf)yz (x, y, ζ) =
Ef

2(1 + ν)
γ(lf)yz (x, y, ζ)

(2.13)

where Poisson’s ν ratio is constant for this plate.

3. The analytical study of the elastic buckling of the plate

The elastic strain energy of the plate

Uε,γ =
Efh

2(1 − ν2)

a
∫

0

b
∫

0

[Φ(uf)ε,γ (x, y) + Φ
(c)
ε,γ(x, y) + Φ

(lf)
ε,γ (x, y)] dx dy (3.1)

where

Φ(uf)ε,γ (x, y) = Φ
(uf)
ε (x, y) + Φ

(uf)
γ (x, y)

Φ(uf)ε (x, y) =

−χc/2
∫

−1/2

{

[ε(uf)x (x, y, ζ)]
2 + 2νε(uf)x (x, y, ζ)ε

(uf)
y (x, y, ζ) + [ε

(uf)
y (x, y, ζ)]

2
}

dζ

Φ(uf)γ (x, y) =
1− ν

2

−χc/2
∫

−1/2

{

[γ(uf)xy (x, y, ζ)]
2 + [γ(uf)xz (x, y, ζ)]

2 + [γ(uf)yz (x, y, ζ)]
2
}

dζ

Φ(c)ε,γ(x, y) = Φ
(c)
ε (x, y) + Φ

(c)
γ (x, y) Φ(lf)ε,γ (x, y) = Φ

(lf)
ε (x, y) + Φ

(lf)
γ (x, y)

Φ(c)ε (x, y) =

−χc/2
∫

−1/2

{

[ε(c)x (x, y, ζ)]
2 + 2νε(c)x (x, y, ζ)ε

(c)
y (x, y, ζ) + [ε

(c)
y (x, y, ζ)]

2
}

fc(ζ) dζ
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Φ(c)γ (x, y) =
1− ν

2

−χc/2
∫

−1/2

{

[γ(c)xy (x, y, ζ)]
2 + [γ(c)xz (x, y, ζ)]

2 + [γ(c)yz (x, y, ζ)]
2
}

fc(ζ) dζ

Φ(lf)ε (x, y) =

−χc/2
∫

−1/2

{

[ε(lf)x (x, y, ζ)]
2 + 2νε(lf)x (x, y, ζ)ε

(lf)
y (x, y, ζ) + [ε

(lf)
y (x, y, ζ)]

2
}

dζ

Φ(lf)γ (x, y) =
1− ν

2

−χc/2
∫

−1/2

{

[γ(lf)xy (x, y, ζ)]
2 + [γ(lf)xz (x, y, ζ)]

2 + [γ(lf)yz (x, y, ζ)]
2
}

dζ

The work of the load is

W =
1

2

a
∫

0

b
∫

0

[

Nx
(∂w

∂x

)2
+Ny

(∂w

∂y

)2]

dx dy (3.2)

Based on the principle of stationary total potential energy δ(Uε,γ −W ) = 0 with consid-
eration of the expressions in Eqs. (3.1) and (3.2), after integration and simple transformation,
three differential equations of equilibrium of this rectangular sandwich plate are obtained in the
following form

Do
{

Cww∇
4w(x, y)− Cwθ

[ ∂

∂x
∇
2ψf (x, y) +

∂

∂y
∇
2ϕf (x, y)

]}

+Nx
∂2w

∂x2
+Ny

∂2w

∂y2
= 0

Cwθ
∂

∂x
∇
2w(x, y) − Cθθ

[∂2ψf
∂x2
+
1− ν

2

∂2ψf
∂y2
+
1 + ν

2

∂2ϕf
∂x∂y

]

+ Cθ
ψf (x, y)

h2
= 0

Cwθ
∂

∂y
∇
2w(x, y) − Cθθ

[1 + ν

2

∂2ψf
∂x∂y

+
1− ν

2

∂2ϕf
∂x2
+
∂2ϕf
∂y2

]

+ Cθ
ϕf (x, y)

h2
= 0

(3.3)

where the dimensionless coefficients are

Cww = 1− χ
3
c + 12

χc/2
∫

−χc/2

ζ2fc(ζ) dζ

Cθθ = 12

(

2

1/2
∫

−χc/2

[f
(lf)
d (ζ)]

2 dζ +

χc/2
∫

−χc/2

[f
(c)
d (ζ)]

2fc(ζ) dζ

)

Cwθ = 3(1 − χ
2
c)Cf +

1

40
(4− 5χ3c + χ

5
c) + 12

χc/2
∫

−χc/2

ζf
(c)
d (ζ)fc(ζ) dζ

Cθ =
1− ν

2

(

1

80
(8− 15χc + 10χ

3
c − 3χ

5
c) + 12

χc/2
∫

−χc/2

[Q
(c)
z (ζ)]

2

fc(ζ)
dζ

)

and

Do =
Efh

3

12(1 − ν2)
[Nmm]

Taking into account the papers by Magnucki et al. (2019) as well as Magnucki and Magnucka-
-Blandzi (2021), two unknown dimensionless displacement functions of the faces are assumed as
follows

ψf (x, y) =
∂θ

∂x
ϕf (x, y) =

∂θ

∂y
(3.4)
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where θ(x, y) [mm] is the generalised displacement. Thus, the three differential equations of
equilibrium convert into the following two equations

Do[Cww∇
4w(x, y) − Cwθ∇

4θ(x, y)] +Nx
∂2w

∂x2
+Ny

∂2w

∂y2
= 0

Cwθ∇
2w(x, y) − Cθθ∇

2θ(x, y) + Cθ
θ(x, y)

h2
= 0

(3.5)

These equations are approximately solved, and so two typical unknown functions describing the
shape of the deformed structure are assumed in a general form as follows

w(x, y) = wa sin
(

mπ
x

a

)

sin
(

nπ
y

b

)

θ(x, y) = θa sin
(

mπ
x

a

)

sin
(

nπ
y

b

)

(3.6)

where: wa [mm], θa [mm] – coefficients of these functions, m, n – natural numbers.
Substituting these functions into Eqs. (3.5), after simple transformations, one obtains

θa =
Cwθ

Cθθ +
ab

π2h2amn
Cθ
wa m2

b

a
Nx + n

2a

b
Ny =

π2

ab
(1− Cse)α

2
mnDp (3.7)

where the dimensionless coefficient is expressed as

αmn = m
2 b

a
+ n2

a

b

and Dp = CwwCo [Nmm] is the flexural rigidity of this plate, while the coefficient of the shear
effect is

Cse =
π2αmn

π2αmnCθθ +
ab
h2Cθ

C2wθ
Cww

(3.8)

Moreover, for further study, the plate load is assumed in the following form

Nx = cxNo Ny = cyNo (3.9)

where: cx and cy are positive dimensionless coefficients. Thus, the critical load is as follows

N0,CR = min
m,n

[

(1− Cse)
α2mn
αN

]π2Dp
ab

(3.10)

where another dimensionless coefficient is introduced

αN = m
2 b

a
cx + n

2a

b
cy

Consequently, the critical load of the square plate (b = a, m = n = 1, αmn = 2) is in the form

N0,CR = 4π
2 1− Cse
cx + cy

Dp
a2

(3.11)

For the particular case of the homogeneous square plate without the shear effect (Cww = 1,
Dp = Co, Cse = 0, cx = 1, cy = 0), one obtains the classical critical stress

σx,CR =
π2

3(1 − ν2)
E
(h

a

)2
(3.12)

Examplary calculations are carried out for square sandwich plates with the selected following
data: Ef = 72000MPa, a = b = 2000mm, h = 30mm, hf = 1.5mm, hc = 27mm, χc = 9/10,
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Table 1. The results of analytical calculations for ne = 2

k 0 0.5 1− ec
Cse 0.00637523 0.00716652 0.0102967

N
(lc−1)
0,CR [N/mm] 1081.99 1074.65 1065.34

N
(lc−2)
0,CR [N/mm] 721.33 716.43 710.26

N
(lc−3)
0,CR [N/mm] 541.00 537.32 532.67

Table 2. The results of analytical calculations for ne = 10

k 0 0.5 1− ec
Cse 0.00860048 0.00878646 0.00961103

N
(lc−1)
0,CR [N/mm] 813.91 813.15 811.92

N
(lc−2)
0,CR [N/mm] 542.61 542.10 541.28

N
(lc−3)
0,CR [N/mm] 406.96 406.58 405.96

ec = 1/24, ν = 0.3, k = (0, 0.5, 1 − ec) and for three load cases: lc− 1 (cx = 1.0, cy = 0), lc− 2
(cx = 1.0, cy = 0.5), lc−3 (cx = 1.0, cy = 1.0). The assumed parameters are exemplary, however,
the mechanical properties of the faces are typical for aluminium alloys, while the core can be
considered to be a densly graded aluminium foam. The results of the analytical calculations of

the shear coefficient Cse (3.8) and critical load values N
(lc−i)
0,CR (3.11) for three load cases (lc− i,

i = 1, 2, 3) and for two values of the exponent-natural number ne = 2, 10 are specified in Tables 1
and 2.

Analysing the results of the above calculations, it can be noted that an increase in the
stiffness near the neutral plane has negligible influence on the critical load. Such an observation
is consistent with the literature provided. This confirms that five-layer plates with symmetrically
varying mechanical properties are insignificantly more resistant to buckling than three-layer
structures. Assuming that Young’s modulus is connected with density of the material, the three-
-layer plates can be characterised by a smaller mass while maintaining the same buckling load.
As expected, an increase of ne leads to a decrease in the critical load, since this parameter refers
to the transition rate of Young’s modulus (Fig. 1) between the faces and the core of the plate.
The faster Young’s modulus of the face reaches the value of ec in the core, the smaller the overall
stiffness of the plate, thus one may notice a decrease in buckling performance.

4. The numerical FEM study of the elastic buckling of the plate

To provide more insight into the study, numerical finite element method (FEM) analyses are
carried out in Ansys 2021 R2 system. The problem is solved using linear static structural analysis.
The parameters describing geometry as well as the material are consistent with the analytical
study.

Typically, the buckling behaviour of a structure should be studied without symmetry bound-
ary conditions since one cannot predict whether the first buckling mode is symmetric. As an
accurate representation of Young’s modulus distribution (Fig. 2) requires a relatively large num-
ber of finite elements across the thickness, this problem becomes computationally demanding.
To address this issue, preliminary analyses with a reduced number of elements are performed
using the full plate model. Those confirm that the first buckling mode is symmetric just like in
the case of homogeneous square plates, and thus a quarter of the plate can be considered in the
numerical analysis.
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The geometry of the quarter thin-walled plate is shown in Fig. 4. The applied boundary
conditions assume simply supported edges and symmetry boundary conditions in the faces co-
incident with symmetry planes. The first of them is introduced by restraining translations w
towards z axis on two edges highlighted in blue in Fig. 4. The symmetric behaviour is included
by blocking the translations u and v, i.e. towards x and y axes. These components refer to
normal directions to the faces highlighted in green in Fig. 4. The compressive loads Nx and Ny
acting on the faces are shown in red in Fig. 4. Following the introduced loads and boundary
conditions, those are consistent with the analytical study.

Fig. 4. The geometry of a quarter of the plate and the applied boundary conditions

The geometry of the structure is divided into first-order hexahedral finite elements
SOLID185. The value of Young’s modulus from Fig. 2 is mapped to the centres of finite elements.
The choice of the first order elements provides a more detailed Young’s modulus distribution
(Fig. 2) than second-order elements for the same number of nodes. The resulting finite element
model is shown in Fig. 5, where Fig. 5a shows the model with the reduced number of finite
elements for better readability, while Fig. 5b refers to the actual mesh. The latter is the result of
a mesh convergence study and consists of 48 elements across the thickness and 91 elements along
the sides of the square plate. The total number of nodes and elements is 414736 and 397488,
respectively. The aspect ratio of the elements is approximately 18. It has been found that a fur-
ther increase in the aspect ratio can cause the inability to achieve the convergence of results. In
addition, a numerical analysis is performed for a homogeneous plate with consistent parameters
applied in the analytical study. Using the well-known expression for the critical stress described
in the literature (Eq. (3.12)) for comparison, the relative difference between the results is 1.38%,
showing an adequate numerical modelling.

Fig. 5. Model divided into finite elements
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Following Young’s modulus function in Eqs. (2.2), (2.3) shown in Fig. 2, its distribution
depends on the parameters k and ne. The first of them refers to the relationship between Young’s
modulus on the external faces and the middle of the plate. The latter describes the pace of
its transition. Exemplary Young’s modulus distributions are shown in Fig. 6 for two sets of
parameters. The effect of non-uniform mechanical property in Ansys software is achieved by
linking the so-called “field variable” to the elastic properties of the material. This variable can
be described by an external text file, which in this case consists of numerous coordinates in a
three-dimensional coordinate system within the plate volume and consistent values of Young’s
modulus in a dimensionless form. The software interpolates the values provided to calculate
Young’s modulus in the centre of each finite element. The more points are provided in the text
file, the more accurate the representation of the selected mechanical parameter becomes.

Fig. 6. Exemplary Young’s modulus distribution for different material parameters

As expected, the first buckling mode (Fig. 7) is similar to the case of homogeneous and
sandwich plates. Despite the fact that its symmetry is enforced by the applied boundary condi-
tions, such behaviour was confirmed in the FEM study for the model with its complete geometry
considered.

Fig. 7. First buckling mode for k = 0.5, ne = 10

To provide more insight into the results, they are summarised in Tables 3 and 5 for ne = 2
and ne = 10, respectively. These are compared to the analytical solution by calculating the



Elastic buckling of a rectangular sandwich plate... 183

relative difference shown in Tables 4 and 6, while the analytical solution is referred to as the
reference value.

Table 3. Results of numerical FEM calculations for ne = 2

k 0 0.5 1− ec

N
(lc−1)
0,CR [N/mm] 1051.62 1042.21 1027.89

N
(lc−2)
0,CR [N/mm] 701.11 694.87 685.39

N
(lc−3)
0,CR [N/mm] 525.83 521.15 514.05

Table 4. Relative differences in analytical and numerical FEM calculations for ne = 2

k 0 0.5 1− ec

δN
(lc−1)
0,CR [%] 2.89 3.11 3.64

δN
(lc−2)
0,CR [%] 2.88 3.10 3.63

δN
(lc−3)
0,CR [%] 2.88 3.10 3.62

Table 5. Results of numerical FEM calculations for ne = 10

k 0 0.5 1− ec

N
(lc−1)
0,CR [N/mm] 786.60 785.63 783.26

N
(lc−2)
0,CR [N/mm] 524.44 523.80 522.24

N
(lc−3)
0,CR [N/mm] 393.33 392.85 391.68

Table 6. Relative differences in analytical and numerical FEM calculations for ne = 10

k 0 0.5 1− ec

δN
(lc−1)
0,CR [%] 3.47 3.50 3.66

δN
(lc−2)
0,CR [%] 3.46 3.49 3.65

δN
(lc−3)
0,CR [%] 3.47 3.49 3.65

5. Conclusions

The advancement in manufacturing methods allows for the designing of structures characterised
by variable mechanical parameters in a controlled manner. This property can be used to achieve
more efficient structural behaviour of load-carrying members. The proposed symmetric varia-
tion in Young’s modulus allows the description of different structures, including homogeneous
structures, three-layer and five-layer structures, with a smooth and controlled transition rate
between layers.
Many studies in the field of composites refer to numerous shear deformation theories that

are based on general predefined shear deformation functions that are usually suitable for specific
FGMs. To solve the problem given in the presented paper, a novel nonlinear shear deformation
theory of a straight normal line was applied. Unlike other theories, the derivation of the shear
deformation function can be achieved analytically without assuming its form in advance; thus,
it allows the study of FGMs and sandwich structures with various properties.
The influence of the studied parameters that affect Young’s modulus distributions can be

considered to be predictable. Both analyses have shown that an increase in Young’s modulus
transition rate from the faces to the core results in a reduced value of the critical load, as
the overall stiffness of this structure is lower. Similarly, an increase of Young’s modulus in the
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neutral plane area of the plate has quite a limited effect on buckling resistance. Considering the
consistency of the results in analytical and numerical applications, one may notice that there is
a limited relationship between Young’s modulus distribution and the results in both methods.

In general, the numerical study shows good agreement with the analytical results, where
the maximum relative difference in critical loads reaches 3.7%. Having in mind the approxi-
mate nature of the obtained solution and numerical errors, such a difference can be considered
satisfactory.
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